Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
|
fac0 |
|
3 |
1 2
|
eqtrdi |
|
4 |
|
id |
|
5 |
4 4
|
oveq12d |
|
6 |
|
0exp0e1 |
|
7 |
5 6
|
eqtrdi |
|
8 |
3 7
|
breq12d |
|
9 |
|
fveq2 |
|
10 |
|
id |
|
11 |
10 10
|
oveq12d |
|
12 |
9 11
|
breq12d |
|
13 |
|
fveq2 |
|
14 |
|
id |
|
15 |
14 14
|
oveq12d |
|
16 |
13 15
|
breq12d |
|
17 |
|
fveq2 |
|
18 |
|
id |
|
19 |
18 18
|
oveq12d |
|
20 |
17 19
|
breq12d |
|
21 |
|
1le1 |
|
22 |
|
faccl |
|
23 |
22
|
adantr |
|
24 |
23
|
nnred |
|
25 |
|
nn0re |
|
26 |
25
|
adantr |
|
27 |
|
simpl |
|
28 |
26 27
|
reexpcld |
|
29 |
|
nn0p1nn |
|
30 |
29
|
adantr |
|
31 |
30
|
nnred |
|
32 |
31 27
|
reexpcld |
|
33 |
|
simpr |
|
34 |
|
nn0ge0 |
|
35 |
34
|
adantr |
|
36 |
26
|
lep1d |
|
37 |
|
leexp1a |
|
38 |
26 31 27 35 36 37
|
syl32anc |
|
39 |
24 28 32 33 38
|
letrd |
|
40 |
30
|
nngt0d |
|
41 |
|
lemul1 |
|
42 |
24 32 31 40 41
|
syl112anc |
|
43 |
39 42
|
mpbid |
|
44 |
|
facp1 |
|
45 |
44
|
adantr |
|
46 |
30
|
nncnd |
|
47 |
46 27
|
expp1d |
|
48 |
43 45 47
|
3brtr4d |
|
49 |
48
|
ex |
|
50 |
8 12 16 20 21 49
|
nn0ind |
|