Metamath Proof Explorer


Theorem fallfac0

Description: The value of the falling factorial when N = 0 . (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion fallfac0 A A 0 _ = 1

Proof

Step Hyp Ref Expression
1 0nn0 0 0
2 fallrisefac A 0 0 A 0 _ = 1 0 A 0
3 1 2 mpan2 A A 0 _ = 1 0 A 0
4 neg1cn 1
5 exp0 1 1 0 = 1
6 4 5 mp1i A 1 0 = 1
7 negcl A A
8 risefac0 A A 0 = 1
9 7 8 syl A A 0 = 1
10 6 9 oveq12d A 1 0 A 0 = 1 1
11 1t1e1 1 1 = 1
12 10 11 eqtrdi A 1 0 A 0 = 1
13 3 12 eqtrd A A 0 _ = 1