Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
fallfac1
Next ⟩
risefacfac
Metamath Proof Explorer
Ascii
Unicode
Theorem
fallfac1
Description:
The value of falling factorial at one.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Assertion
fallfac1
⊢
A
∈
ℂ
→
A
1
_
=
A
Proof
Step
Hyp
Ref
Expression
1
0p1e1
⊢
0
+
1
=
1
2
1
oveq2i
⊢
A
0
+
1
_
=
A
1
_
3
0nn0
⊢
0
∈
ℕ
0
4
fallfacp1
⊢
A
∈
ℂ
∧
0
∈
ℕ
0
→
A
0
+
1
_
=
A
0
_
⁢
A
−
0
5
3
4
mpan2
⊢
A
∈
ℂ
→
A
0
+
1
_
=
A
0
_
⁢
A
−
0
6
fallfac0
⊢
A
∈
ℂ
→
A
0
_
=
1
7
subid1
⊢
A
∈
ℂ
→
A
−
0
=
A
8
6
7
oveq12d
⊢
A
∈
ℂ
→
A
0
_
⁢
A
−
0
=
1
⁢
A
9
mulid2
⊢
A
∈
ℂ
→
1
⁢
A
=
A
10
5
8
9
3eqtrd
⊢
A
∈
ℂ
→
A
0
+
1
_
=
A
11
2
10
eqtr3id
⊢
A
∈
ℂ
→
A
1
_
=
A