Metamath Proof Explorer


Theorem fallfaccl

Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion fallfaccl A N 0 A N _

Proof

Step Hyp Ref Expression
1 ssid
2 ax-1cn 1
3 mulcl x y x y
4 nn0cn k 0 k
5 subcl A k A k
6 4 5 sylan2 A k 0 A k
7 1 2 3 6 fallfaccllem A N 0 A N _