Metamath Proof Explorer


Theorem fallfacp1d

Description: The value of the falling factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018)

Ref Expression
Hypotheses rffacp1d.1 φ A
rffacp1d.2 φ N 0
Assertion fallfacp1d φ A N + 1 _ = A N _ A N

Proof

Step Hyp Ref Expression
1 rffacp1d.1 φ A
2 rffacp1d.2 φ N 0
3 fallfacp1 A N 0 A N + 1 _ = A N _ A N
4 1 2 3 syl2anc φ A N + 1 _ = A N _ A N