Metamath Proof Explorer


Theorem fallfacval

Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion fallfacval A N 0 A N _ = k = 0 N 1 A k

Proof

Step Hyp Ref Expression
1 oveq1 x = A x k = A k
2 1 prodeq2sdv x = A k = 0 n 1 x k = k = 0 n 1 A k
3 oveq1 n = N n 1 = N 1
4 3 oveq2d n = N 0 n 1 = 0 N 1
5 4 prodeq1d n = N k = 0 n 1 A k = k = 0 N 1 A k
6 df-fallfac FallFac = x , n 0 k = 0 n 1 x k
7 prodex k = 0 N 1 A k V
8 2 5 6 7 ovmpo A N 0 A N _ = k = 0 N 1 A k