Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
fallfacval
Next ⟩
risefacval2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fallfacval
Description:
The value of the falling factorial function.
(Contributed by
Scott Fenton
, 5-Jan-2018)
Ref
Expression
Assertion
fallfacval
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
N
_
=
∏
k
=
0
N
−
1
A
−
k
Proof
Step
Hyp
Ref
Expression
1
oveq1
⊢
x
=
A
→
x
−
k
=
A
−
k
2
1
prodeq2sdv
⊢
x
=
A
→
∏
k
=
0
n
−
1
x
−
k
=
∏
k
=
0
n
−
1
A
−
k
3
oveq1
⊢
n
=
N
→
n
−
1
=
N
−
1
4
3
oveq2d
⊢
n
=
N
→
0
…
n
−
1
=
0
…
N
−
1
5
4
prodeq1d
⊢
n
=
N
→
∏
k
=
0
n
−
1
A
−
k
=
∏
k
=
0
N
−
1
A
−
k
6
df-fallfac
⊢
FallFac
=
x
∈
ℂ
,
n
∈
ℕ
0
⟼
∏
k
=
0
n
−
1
x
−
k
7
prodex
⊢
∏
k
=
0
N
−
1
A
−
k
∈
V
8
2
5
6
7
ovmpo
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
N
_
=
∏
k
=
0
N
−
1
A
−
k