Metamath Proof Explorer


Theorem fallfacval3

Description: A product representation of falling factorial when A is a nonnegative integer. (Contributed by Scott Fenton, 20-Mar-2018)

Ref Expression
Assertion fallfacval3 N 0 A A N _ = k = A N 1 A k

Proof

Step Hyp Ref Expression
1 elfz3nn0 N 0 A A 0
2 1 nn0cnd N 0 A A
3 elfznn0 N 0 A N 0
4 fallfacval A N 0 A N _ = j = 0 N 1 A j
5 2 3 4 syl2anc N 0 A A N _ = j = 0 N 1 A j
6 elfzel2 N 0 A A
7 elfzel1 N 0 A 0
8 elfzelz N 0 A N
9 peano2zm N N 1
10 8 9 syl N 0 A N 1
11 elfzelz j 0 N 1 j
12 11 zcnd j 0 N 1 j
13 subcl A j A j
14 2 12 13 syl2an N 0 A j 0 N 1 A j
15 oveq2 j = A k A j = A A k
16 6 7 10 14 15 fprodrev N 0 A j = 0 N 1 A j = k = A N 1 A 0 A A k
17 2 subid1d N 0 A A 0 = A
18 17 oveq2d N 0 A A N 1 A 0 = A N 1 A
19 2 adantr N 0 A k A N 1 A 0 A
20 elfzelz k A N 1 A 0 k
21 20 zcnd k A N 1 A 0 k
22 21 adantl N 0 A k A N 1 A 0 k
23 19 22 nncand N 0 A k A N 1 A 0 A A k = k
24 18 23 prodeq12dv N 0 A k = A N 1 A 0 A A k = k = A N 1 A k
25 5 16 24 3eqtrd N 0 A A N _ = k = A N 1 A k