Metamath Proof Explorer


Theorem fallfacval4

Description: Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018)

Ref Expression
Assertion fallfacval4 N 0 A A N _ = A ! A N !

Proof

Step Hyp Ref Expression
1 fzfid N 0 A A - N + 1 A Fin
2 elfzelz k A - N + 1 A k
3 2 zcnd k A - N + 1 A k
4 3 adantl N 0 A k A - N + 1 A k
5 1 4 fprodcl N 0 A k = A - N + 1 A k
6 fzfid N 0 A 1 A N Fin
7 elfznn k 1 A N k
8 7 adantl N 0 A k 1 A N k
9 8 nncnd N 0 A k 1 A N k
10 6 9 fprodcl N 0 A k = 1 A N k
11 8 nnne0d N 0 A k 1 A N k 0
12 6 9 11 fprodn0 N 0 A k = 1 A N k 0
13 5 10 12 divcan3d N 0 A k = 1 A N k k = A - N + 1 A k k = 1 A N k = k = A - N + 1 A k
14 fznn0sub N 0 A A N 0
15 14 nn0red N 0 A A N
16 15 ltp1d N 0 A A N < A - N + 1
17 fzdisj A N < A - N + 1 1 A N A - N + 1 A =
18 16 17 syl N 0 A 1 A N A - N + 1 A =
19 nn0p1nn A N 0 A - N + 1
20 14 19 syl N 0 A A - N + 1
21 nnuz = 1
22 20 21 eleqtrdi N 0 A A - N + 1 1
23 14 nn0zd N 0 A A N
24 elfzel2 N 0 A A
25 elfzle1 N 0 A 0 N
26 24 zred N 0 A A
27 elfzelz N 0 A N
28 27 zred N 0 A N
29 26 28 subge02d N 0 A 0 N A N A
30 25 29 mpbid N 0 A A N A
31 eluz2 A A N A N A A N A
32 23 24 30 31 syl3anbrc N 0 A A A N
33 fzsplit2 A - N + 1 1 A A N 1 A = 1 A N A - N + 1 A
34 22 32 33 syl2anc N 0 A 1 A = 1 A N A - N + 1 A
35 fzfid N 0 A 1 A Fin
36 elfznn k 1 A k
37 36 nncnd k 1 A k
38 37 adantl N 0 A k 1 A k
39 18 34 35 38 fprodsplit N 0 A k = 1 A k = k = 1 A N k k = A - N + 1 A k
40 39 oveq1d N 0 A k = 1 A k k = 1 A N k = k = 1 A N k k = A - N + 1 A k k = 1 A N k
41 24 zcnd N 0 A A
42 27 zcnd N 0 A N
43 1cnd N 0 A 1
44 41 42 43 subsubd N 0 A A N 1 = A - N + 1
45 44 oveq1d N 0 A A N 1 A = A - N + 1 A
46 45 prodeq1d N 0 A k = A N 1 A k = k = A - N + 1 A k
47 13 40 46 3eqtr4rd N 0 A k = A N 1 A k = k = 1 A k k = 1 A N k
48 fallfacval3 N 0 A A N _ = k = A N 1 A k
49 elfz3nn0 N 0 A A 0
50 fprodfac A 0 A ! = k = 1 A k
51 49 50 syl N 0 A A ! = k = 1 A k
52 fprodfac A N 0 A N ! = k = 1 A N k
53 14 52 syl N 0 A A N ! = k = 1 A N k
54 51 53 oveq12d N 0 A A ! A N ! = k = 1 A k k = 1 A N k
55 47 48 54 3eqtr4d N 0 A A N _ = A ! A N !