Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|
2 |
|
elfzelz |
|
3 |
2
|
zcnd |
|
4 |
3
|
adantl |
|
5 |
1 4
|
fprodcl |
|
6 |
|
fzfid |
|
7 |
|
elfznn |
|
8 |
7
|
adantl |
|
9 |
8
|
nncnd |
|
10 |
6 9
|
fprodcl |
|
11 |
8
|
nnne0d |
|
12 |
6 9 11
|
fprodn0 |
|
13 |
5 10 12
|
divcan3d |
|
14 |
|
fznn0sub |
|
15 |
14
|
nn0red |
|
16 |
15
|
ltp1d |
|
17 |
|
fzdisj |
|
18 |
16 17
|
syl |
|
19 |
|
nn0p1nn |
|
20 |
14 19
|
syl |
|
21 |
|
nnuz |
|
22 |
20 21
|
eleqtrdi |
|
23 |
14
|
nn0zd |
|
24 |
|
elfzel2 |
|
25 |
|
elfzle1 |
|
26 |
24
|
zred |
|
27 |
|
elfzelz |
|
28 |
27
|
zred |
|
29 |
26 28
|
subge02d |
|
30 |
25 29
|
mpbid |
|
31 |
|
eluz2 |
|
32 |
23 24 30 31
|
syl3anbrc |
|
33 |
|
fzsplit2 |
|
34 |
22 32 33
|
syl2anc |
|
35 |
|
fzfid |
|
36 |
|
elfznn |
|
37 |
36
|
nncnd |
|
38 |
37
|
adantl |
|
39 |
18 34 35 38
|
fprodsplit |
|
40 |
39
|
oveq1d |
|
41 |
24
|
zcnd |
|
42 |
27
|
zcnd |
|
43 |
|
1cnd |
|
44 |
41 42 43
|
subsubd |
|
45 |
44
|
oveq1d |
|
46 |
45
|
prodeq1d |
|
47 |
13 40 46
|
3eqtr4rd |
|
48 |
|
fallfacval3 |
|
49 |
|
elfz3nn0 |
|
50 |
|
fprodfac |
|
51 |
49 50
|
syl |
|
52 |
|
fprodfac |
|
53 |
14 52
|
syl |
|
54 |
51 53
|
oveq12d |
|
55 |
47 48 54
|
3eqtr4d |
|