Metamath Proof Explorer


Theorem fallrisefac

Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018)

Ref Expression
Assertion fallrisefac X N 0 X N _ = 1 N X N

Proof

Step Hyp Ref Expression
1 nn0cn N 0 N
2 1 2timesd N 0 2 N = N + N
3 2 oveq2d N 0 1 2 N = 1 N + N
4 nn0z N 0 N
5 m1expeven N 1 2 N = 1
6 4 5 syl N 0 1 2 N = 1
7 neg1cn 1
8 expadd 1 N 0 N 0 1 N + N = 1 N 1 N
9 7 8 mp3an1 N 0 N 0 1 N + N = 1 N 1 N
10 9 anidms N 0 1 N + N = 1 N 1 N
11 3 6 10 3eqtr3rd N 0 1 N 1 N = 1
12 11 adantl X N 0 1 N 1 N = 1
13 negneg X X = X
14 13 adantr X N 0 X = X
15 14 oveq1d X N 0 X N _ = X N _
16 12 15 oveq12d X N 0 1 N 1 N X N _ = 1 X N _
17 expcl 1 N 0 1 N
18 7 17 mpan N 0 1 N
19 18 adantl X N 0 1 N
20 negcl X X
21 20 negcld X X
22 fallfaccl X N 0 X N _
23 21 22 sylan X N 0 X N _
24 19 19 23 mulassd X N 0 1 N 1 N X N _ = 1 N 1 N X N _
25 fallfaccl X N 0 X N _
26 25 mulid2d X N 0 1 X N _ = X N _
27 16 24 26 3eqtr3rd X N 0 X N _ = 1 N 1 N X N _
28 risefallfac X N 0 X N = 1 N X N _
29 20 28 sylan X N 0 X N = 1 N X N _
30 29 oveq2d X N 0 1 N X N = 1 N 1 N X N _
31 27 30 eqtr4d X N 0 X N _ = 1 N X N