Metamath Proof Explorer


Theorem falseral0

Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020)

Ref Expression
Assertion falseral0 x ¬ φ x A φ A =

Proof

Step Hyp Ref Expression
1 df-ral x A φ x x A φ
2 19.26 x ¬ φ x A φ x ¬ φ x x A φ
3 con3 x A φ ¬ φ ¬ x A
4 3 impcom ¬ φ x A φ ¬ x A
5 4 alimi x ¬ φ x A φ x ¬ x A
6 alnex x ¬ x A ¬ x x A
7 5 6 sylib x ¬ φ x A φ ¬ x x A
8 notnotb A = ¬ ¬ A =
9 neq0 ¬ A = x x A
10 8 9 xchbinx A = ¬ x x A
11 7 10 sylibr x ¬ φ x A φ A =
12 2 11 sylbir x ¬ φ x x A φ A =
13 1 12 sylan2b x ¬ φ x A φ A =