Metamath Proof Explorer


Theorem fbasssin

Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Jeff Hankins, 1-Dec-2010)

Ref Expression
Assertion fbasssin F fBas X A F B F x F x A B

Proof

Step Hyp Ref Expression
1 elfvdm F fBas X X dom fBas
2 isfbas2 X dom fBas F fBas X F 𝒫 X F F y F z F x F x y z
3 1 2 syl F fBas X F fBas X F 𝒫 X F F y F z F x F x y z
4 3 ibi F fBas X F 𝒫 X F F y F z F x F x y z
5 4 simprd F fBas X F F y F z F x F x y z
6 5 simp3d F fBas X y F z F x F x y z
7 ineq1 y = A y z = A z
8 7 sseq2d y = A x y z x A z
9 8 rexbidv y = A x F x y z x F x A z
10 ineq2 z = B A z = A B
11 10 sseq2d z = B x A z x A B
12 11 rexbidv z = B x F x A z x F x A B
13 9 12 rspc2v A F B F y F z F x F x y z x F x A B
14 6 13 syl5com F fBas X A F B F x F x A B
15 14 3impib F fBas X A F B F x F x A B