Metamath Proof Explorer


Theorem fbdmn0

Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbdmn0 F fBas B B

Proof

Step Hyp Ref Expression
1 0nelfb F fBas B ¬ F
2 fveq2 B = fBas B = fBas
3 2 eleq2d B = F fBas B F fBas
4 3 biimpd B = F fBas B F fBas
5 fbasne0 F fBas F
6 n0 F x x F
7 5 6 sylib F fBas x x F
8 fbelss F fBas x F x
9 ss0 x x =
10 8 9 syl F fBas x F x =
11 simpr F fBas x F x F
12 10 11 eqeltrrd F fBas x F F
13 7 12 exlimddv F fBas F
14 4 13 syl6com F fBas B B = F
15 14 necon3bd F fBas B ¬ F B
16 1 15 mpd F fBas B B