Step |
Hyp |
Ref |
Expression |
1 |
|
fbflim.3 |
|
2 |
1
|
fbflim |
|
3 |
|
topontop |
|
4 |
3
|
ad2antrr |
|
5 |
|
simpr |
|
6 |
|
toponuni |
|
7 |
6
|
ad2antrr |
|
8 |
5 7
|
eleqtrd |
|
9 |
|
eqid |
|
10 |
9
|
isneip |
|
11 |
4 8 10
|
syl2anc |
|
12 |
|
simpr |
|
13 |
11 12
|
syl6bi |
|
14 |
|
r19.29 |
|
15 |
|
pm3.45 |
|
16 |
15
|
imp |
|
17 |
|
sstr2 |
|
18 |
17
|
com12 |
|
19 |
18
|
reximdv |
|
20 |
19
|
impcom |
|
21 |
16 20
|
syl |
|
22 |
21
|
rexlimivw |
|
23 |
14 22
|
syl |
|
24 |
23
|
ex |
|
25 |
13 24
|
syl9 |
|
26 |
25
|
ralrimdv |
|
27 |
4
|
adantr |
|
28 |
|
simprl |
|
29 |
|
simprr |
|
30 |
|
opnneip |
|
31 |
27 28 29 30
|
syl3anc |
|
32 |
|
sseq2 |
|
33 |
32
|
rexbidv |
|
34 |
33
|
rspcv |
|
35 |
31 34
|
syl |
|
36 |
35
|
expr |
|
37 |
36
|
com23 |
|
38 |
37
|
ralrimdva |
|
39 |
26 38
|
impbid |
|
40 |
39
|
pm5.32da |
|
41 |
2 40
|
bitrd |
|