Metamath Proof Explorer


Theorem fbncp

Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion fbncp F fBas X A F ¬ B A F

Proof

Step Hyp Ref Expression
1 0nelfb F fBas X ¬ F
2 1 adantr F fBas X A F ¬ F
3 fbasssin F fBas X A F B A F x F x A B A
4 disjdif A B A =
5 4 sseq2i x A B A x
6 ss0 x x =
7 5 6 sylbi x A B A x =
8 eleq1 x = x F F
9 8 biimpac x F x = F
10 7 9 sylan2 x F x A B A F
11 10 rexlimiva x F x A B A F
12 3 11 syl F fBas X A F B A F F
13 12 3expia F fBas X A F B A F F
14 2 13 mtod F fBas X A F ¬ B A F