Metamath Proof Explorer


Theorem fcfelbas

Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion fcfelbas J TopOn X L Fil Y F : Y X A J fClusf L F A X

Proof

Step Hyp Ref Expression
1 fcfval J TopOn X L Fil Y F : Y X J fClusf L F = J fClus X FilMap F L
2 1 eleq2d J TopOn X L Fil Y F : Y X A J fClusf L F A J fClus X FilMap F L
3 eqid J = J
4 3 fclselbas A J fClus X FilMap F L A J
5 2 4 syl6bi J TopOn X L Fil Y F : Y X A J fClusf L F A J
6 5 imp J TopOn X L Fil Y F : Y X A J fClusf L F A J
7 simpl1 J TopOn X L Fil Y F : Y X A J fClusf L F J TopOn X
8 toponuni J TopOn X X = J
9 7 8 syl J TopOn X L Fil Y F : Y X A J fClusf L F X = J
10 6 9 eleqtrrd J TopOn X L Fil Y F : Y X A J fClusf L F A X