Step |
Hyp |
Ref |
Expression |
1 |
|
isfcf |
|
2 |
|
simpll1 |
|
3 |
|
topontop |
|
4 |
2 3
|
syl |
|
5 |
|
simpr |
|
6 |
|
eqid |
|
7 |
6
|
neii1 |
|
8 |
4 5 7
|
syl2anc |
|
9 |
6
|
ntrss2 |
|
10 |
4 8 9
|
syl2anc |
|
11 |
|
simplr |
|
12 |
|
toponuni |
|
13 |
2 12
|
syl |
|
14 |
11 13
|
eleqtrd |
|
15 |
14
|
snssd |
|
16 |
6
|
neiint |
|
17 |
4 15 8 16
|
syl3anc |
|
18 |
5 17
|
mpbid |
|
19 |
|
snssg |
|
20 |
11 19
|
syl |
|
21 |
18 20
|
mpbird |
|
22 |
6
|
ntropn |
|
23 |
4 8 22
|
syl2anc |
|
24 |
|
eleq2 |
|
25 |
|
ineq1 |
|
26 |
25
|
neeq1d |
|
27 |
26
|
ralbidv |
|
28 |
24 27
|
imbi12d |
|
29 |
28
|
rspcv |
|
30 |
23 29
|
syl |
|
31 |
21 30
|
mpid |
|
32 |
|
ssrin |
|
33 |
|
ssn0 |
|
34 |
33
|
ex |
|
35 |
32 34
|
syl |
|
36 |
35
|
ralimdv |
|
37 |
10 31 36
|
sylsyld |
|
38 |
37
|
ralrimdva |
|
39 |
|
simpl1 |
|
40 |
39 3
|
syl |
|
41 |
|
opnneip |
|
42 |
41
|
3expb |
|
43 |
40 42
|
sylan |
|
44 |
|
ineq1 |
|
45 |
44
|
neeq1d |
|
46 |
45
|
ralbidv |
|
47 |
46
|
rspcv |
|
48 |
43 47
|
syl |
|
49 |
48
|
expr |
|
50 |
49
|
com23 |
|
51 |
50
|
ralrimdva |
|
52 |
38 51
|
impbid |
|
53 |
52
|
pm5.32da |
|
54 |
1 53
|
bitrd |
|