Metamath Proof Explorer


Theorem fcfneii

Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion fcfneii J TopOn X L Fil Y F : Y X A J fClusf L F N nei J A S L N F S

Proof

Step Hyp Ref Expression
1 fcfnei J TopOn X L Fil Y F : Y X A J fClusf L F A X n nei J A s L n F s
2 ineq1 n = N n F s = N F s
3 2 neeq1d n = N n F s N F s
4 imaeq2 s = S F s = F S
5 4 ineq2d s = S N F s = N F S
6 5 neeq1d s = S N F s N F S
7 3 6 rspc2v N nei J A S L n nei J A s L n F s N F S
8 7 ex N nei J A S L n nei J A s L n F s N F S
9 8 com3r n nei J A s L n F s N nei J A S L N F S
10 9 adantl A X n nei J A s L n F s N nei J A S L N F S
11 1 10 syl6bi J TopOn X L Fil Y F : Y X A J fClusf L F N nei J A S L N F S
12 11 3imp2 J TopOn X L Fil Y F : Y X A J fClusf L F N nei J A S L N F S