Step |
Hyp |
Ref |
Expression |
1 |
|
df-fcf |
|
2 |
1
|
a1i |
|
3 |
|
simprl |
|
4 |
3
|
unieqd |
|
5 |
|
toponuni |
|
6 |
5
|
ad2antrr |
|
7 |
4 6
|
eqtr4d |
|
8 |
|
unieq |
|
9 |
8
|
ad2antll |
|
10 |
|
filunibas |
|
11 |
10
|
ad2antlr |
|
12 |
9 11
|
eqtrd |
|
13 |
7 12
|
oveq12d |
|
14 |
7
|
oveq1d |
|
15 |
|
simprr |
|
16 |
14 15
|
fveq12d |
|
17 |
3 16
|
oveq12d |
|
18 |
13 17
|
mpteq12dv |
|
19 |
|
topontop |
|
20 |
19
|
adantr |
|
21 |
|
fvssunirn |
|
22 |
21
|
sseli |
|
23 |
22
|
adantl |
|
24 |
|
ovex |
|
25 |
24
|
mptex |
|
26 |
25
|
a1i |
|
27 |
2 18 20 23 26
|
ovmpod |
|
28 |
27
|
3adant3 |
|
29 |
|
simpr |
|
30 |
29
|
oveq2d |
|
31 |
30
|
fveq1d |
|
32 |
31
|
oveq2d |
|
33 |
|
toponmax |
|
34 |
|
filtop |
|
35 |
|
elmapg |
|
36 |
33 34 35
|
syl2an |
|
37 |
36
|
biimp3ar |
|
38 |
|
ovexd |
|
39 |
28 32 37 38
|
fvmptd |
|