Metamath Proof Explorer


Theorem fclim

Description: The limit relation is function-like, and with range the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion fclim : dom

Proof

Step Hyp Ref Expression
1 climrel Rel
2 climuni x y x z y = z
3 2 ax-gen z x y x z y = z
4 3 ax-gen y z x y x z y = z
5 4 ax-gen x y z x y x z y = z
6 dffun2 Fun Rel x y z x y x z y = z
7 1 5 6 mpbir2an Fun
8 funfn Fun Fn dom
9 7 8 mpbi Fn dom
10 vex y V
11 10 elrn y ran x x y
12 climcl x y y
13 12 exlimiv x x y y
14 11 13 sylbi y ran y
15 14 ssriv ran
16 df-f : dom Fn dom ran
17 9 15 16 mpbir2an : dom