Metamath Proof Explorer


Theorem fclsbas

Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsbas.f F = X filGen B
Assertion fclsbas J TopOn X B fBas X A J fClus F A X o J A o s B o s

Proof

Step Hyp Ref Expression
1 fclsbas.f F = X filGen B
2 fgcl B fBas X X filGen B Fil X
3 2 adantl J TopOn X B fBas X X filGen B Fil X
4 1 3 eqeltrid J TopOn X B fBas X F Fil X
5 fclsopn J TopOn X F Fil X A J fClus F A X o J A o t F o t
6 4 5 syldan J TopOn X B fBas X A J fClus F A X o J A o t F o t
7 ssfg B fBas X B X filGen B
8 7 ad3antlr J TopOn X B fBas X A X o J A o B X filGen B
9 8 1 sseqtrrdi J TopOn X B fBas X A X o J A o B F
10 ssralv B F t F o t t B o t
11 9 10 syl J TopOn X B fBas X A X o J A o t F o t t B o t
12 ineq2 t = s o t = o s
13 12 neeq1d t = s o t o s
14 13 cbvralvw t B o t s B o s
15 11 14 syl6ib J TopOn X B fBas X A X o J A o t F o t s B o s
16 1 eleq2i t F t X filGen B
17 elfg B fBas X t X filGen B t X s B s t
18 17 ad3antlr J TopOn X B fBas X A X o J A o t X filGen B t X s B s t
19 16 18 syl5bb J TopOn X B fBas X A X o J A o t F t X s B s t
20 19 simplbda J TopOn X B fBas X A X o J A o t F s B s t
21 r19.29r s B s t s B o s s B s t o s
22 sslin s t o s o t
23 ssn0 o s o t o s o t
24 22 23 sylan s t o s o t
25 24 rexlimivw s B s t o s o t
26 21 25 syl s B s t s B o s o t
27 26 ex s B s t s B o s o t
28 20 27 syl J TopOn X B fBas X A X o J A o t F s B o s o t
29 28 ralrimdva J TopOn X B fBas X A X o J A o s B o s t F o t
30 15 29 impbid J TopOn X B fBas X A X o J A o t F o t s B o s
31 30 anassrs J TopOn X B fBas X A X o J A o t F o t s B o s
32 31 pm5.74da J TopOn X B fBas X A X o J A o t F o t A o s B o s
33 32 ralbidva J TopOn X B fBas X A X o J A o t F o t o J A o s B o s
34 33 pm5.32da J TopOn X B fBas X A X o J A o t F o t A X o J A o s B o s
35 6 34 bitrd J TopOn X B fBas X A J fClus F A X o J A o s B o s