Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
simplr |
|
3 |
|
fclstopon |
|
4 |
3
|
ad2antll |
|
5 |
2 4
|
mpbid |
|
6 |
|
simprl |
|
7 |
|
fclsss1 |
|
8 |
1 5 6 7
|
syl3anc |
|
9 |
|
simprr |
|
10 |
8 9
|
sseldd |
|
11 |
10
|
expr |
|
12 |
11
|
ssrdv |
|
13 |
12
|
ralrimivw |
|
14 |
|
simpllr |
|
15 |
|
toponmax |
|
16 |
|
ssid |
|
17 |
|
eleq2 |
|
18 |
|
sseq1 |
|
19 |
17 18
|
anbi12d |
|
20 |
19
|
rspcev |
|
21 |
16 20
|
mpanr2 |
|
22 |
21
|
ex |
|
23 |
14 15 22
|
3syl |
|
24 |
|
eleq2 |
|
25 |
|
sseq2 |
|
26 |
25
|
anbi2d |
|
27 |
26
|
rexbidv |
|
28 |
24 27
|
imbi12d |
|
29 |
23 28
|
syl5ibrcom |
|
30 |
|
simplll |
|
31 |
|
simprl |
|
32 |
|
simprrr |
|
33 |
|
supnfcls |
|
34 |
30 31 32 33
|
syl3anc |
|
35 |
|
toponss |
|
36 |
30 31 35
|
syl2anc |
|
37 |
36 32
|
sseldd |
|
38 |
|
simpllr |
|
39 |
|
toponmax |
|
40 |
30 39
|
syl |
|
41 |
|
difssd |
|
42 |
|
simprrl |
|
43 |
|
pssdifn0 |
|
44 |
36 42 43
|
syl2anc |
|
45 |
|
supfil |
|
46 |
40 41 44 45
|
syl3anc |
|
47 |
|
fclsopn |
|
48 |
38 46 47
|
syl2anc |
|
49 |
37 48
|
mpbirand |
|
50 |
|
oveq2 |
|
51 |
|
oveq2 |
|
52 |
50 51
|
sseq12d |
|
53 |
|
simplr |
|
54 |
52 53 46
|
rspcdva |
|
55 |
54
|
sseld |
|
56 |
49 55
|
sylbird |
|
57 |
34 56
|
mtod |
|
58 |
|
rexanali |
|
59 |
|
rexnal |
|
60 |
|
sseq2 |
|
61 |
60
|
elrab |
|
62 |
|
sslin |
|
63 |
61 62
|
simplbiim |
|
64 |
|
ssn0 |
|
65 |
64
|
ex |
|
66 |
65
|
necon1bd |
|
67 |
|
inssdif0 |
|
68 |
66 67
|
syl6ibr |
|
69 |
|
toponss |
|
70 |
38 69
|
sylan |
|
71 |
|
df-ss |
|
72 |
70 71
|
sylib |
|
73 |
72
|
sseq1d |
|
74 |
73
|
biimpd |
|
75 |
68 74
|
syl9r |
|
76 |
63 75
|
syl5 |
|
77 |
76
|
rexlimdv |
|
78 |
59 77
|
syl5bir |
|
79 |
78
|
anim2d |
|
80 |
79
|
reximdva |
|
81 |
58 80
|
syl5bir |
|
82 |
57 81
|
mpd |
|
83 |
82
|
anassrs |
|
84 |
83
|
exp32 |
|
85 |
29 84
|
pm2.61dne |
|
86 |
85
|
ralrimiv |
|
87 |
|
topontop |
|
88 |
|
eltop2 |
|
89 |
14 87 88
|
3syl |
|
90 |
86 89
|
mpbird |
|
91 |
90
|
ex |
|
92 |
91
|
ssrdv |
|
93 |
13 92
|
impbida |
|