Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fclscmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | fclscmpi | |
3 | 2 | ralrimiva | |
4 | toponuni | |
|
5 | 4 | fveq2d | |
6 | 5 | raleqdv | |
7 | 3 6 | imbitrrid | |
8 | elpwi | |
|
9 | vn0 | |
|
10 | simpr | |
|
11 | 10 | inteqd | |
12 | int0 | |
|
13 | 11 12 | eqtrdi | |
14 | 13 | neeq1d | |
15 | 9 14 | mpbiri | |
16 | 15 | a1d | |
17 | ssfii | |
|
18 | 17 | elv | |
19 | simplrl | |
|
20 | 1 | cldss2 | |
21 | 4 | ad2antrr | |
22 | 21 | pweqd | |
23 | 20 22 | sseqtrrid | |
24 | 19 23 | sstrd | |
25 | simpr | |
|
26 | simplrr | |
|
27 | toponmax | |
|
28 | 27 | ad2antrr | |
29 | fsubbas | |
|
30 | 28 29 | syl | |
31 | 24 25 26 30 | mpbir3and | |
32 | ssfg | |
|
33 | 31 32 | syl | |
34 | 18 33 | sstrid | |
35 | 34 | sselda | |
36 | fclssscls | |
|
37 | 35 36 | syl | |
38 | 19 | sselda | |
39 | cldcls | |
|
40 | 38 39 | syl | |
41 | 37 40 | sseqtrd | |
42 | 41 | ralrimiva | |
43 | ssint | |
|
44 | 42 43 | sylibr | |
45 | fgcl | |
|
46 | oveq2 | |
|
47 | 46 | neeq1d | |
48 | 47 | rspcv | |
49 | 31 45 48 | 3syl | |
50 | ssn0 | |
|
51 | 44 49 50 | syl6an | |
52 | 16 51 | pm2.61dane | |
53 | 52 | expr | |
54 | 8 53 | sylan2 | |
55 | 54 | com23 | |
56 | 55 | ralrimdva | |
57 | topontop | |
|
58 | cmpfi | |
|
59 | 57 58 | syl | |
60 | 56 59 | sylibrd | |
61 | 7 60 | impbid | |