Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
fclscmpi |
|
3 |
2
|
ralrimiva |
|
4 |
|
toponuni |
|
5 |
4
|
fveq2d |
|
6 |
5
|
raleqdv |
|
7 |
3 6
|
syl5ibr |
|
8 |
|
elpwi |
|
9 |
|
vn0 |
|
10 |
|
simpr |
|
11 |
10
|
inteqd |
|
12 |
|
int0 |
|
13 |
11 12
|
eqtrdi |
|
14 |
13
|
neeq1d |
|
15 |
9 14
|
mpbiri |
|
16 |
15
|
a1d |
|
17 |
|
ssfii |
|
18 |
17
|
elv |
|
19 |
|
simplrl |
|
20 |
1
|
cldss2 |
|
21 |
4
|
ad2antrr |
|
22 |
21
|
pweqd |
|
23 |
20 22
|
sseqtrrid |
|
24 |
19 23
|
sstrd |
|
25 |
|
simpr |
|
26 |
|
simplrr |
|
27 |
|
toponmax |
|
28 |
27
|
ad2antrr |
|
29 |
|
fsubbas |
|
30 |
28 29
|
syl |
|
31 |
24 25 26 30
|
mpbir3and |
|
32 |
|
ssfg |
|
33 |
31 32
|
syl |
|
34 |
18 33
|
sstrid |
|
35 |
34
|
sselda |
|
36 |
|
fclssscls |
|
37 |
35 36
|
syl |
|
38 |
19
|
sselda |
|
39 |
|
cldcls |
|
40 |
38 39
|
syl |
|
41 |
37 40
|
sseqtrd |
|
42 |
41
|
ralrimiva |
|
43 |
|
ssint |
|
44 |
42 43
|
sylibr |
|
45 |
|
fgcl |
|
46 |
|
oveq2 |
|
47 |
46
|
neeq1d |
|
48 |
47
|
rspcv |
|
49 |
31 45 48
|
3syl |
|
50 |
|
ssn0 |
|
51 |
44 49 50
|
syl6an |
|
52 |
16 51
|
pm2.61dane |
|
53 |
52
|
expr |
|
54 |
8 53
|
sylan2 |
|
55 |
54
|
com23 |
|
56 |
55
|
ralrimdva |
|
57 |
|
topontop |
|
58 |
|
cmpfi |
|
59 |
57 58
|
syl |
|
60 |
56 59
|
sylibrd |
|
61 |
7 60
|
impbid |
|