Metamath Proof Explorer


Theorem fclscmp

Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclscmp JTopOnXJCompfFilXJfClusf

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 fclscmpi JCompfFilJJfClusf
3 2 ralrimiva JCompfFilJJfClusf
4 toponuni JTopOnXX=J
5 4 fveq2d JTopOnXFilX=FilJ
6 5 raleqdv JTopOnXfFilXJfClusffFilJJfClusf
7 3 6 imbitrrid JTopOnXJCompfFilXJfClusf
8 elpwi x𝒫ClsdJxClsdJ
9 vn0 V
10 simpr JTopOnXxClsdJ¬fixx=x=
11 10 inteqd JTopOnXxClsdJ¬fixx=x=
12 int0 =V
13 11 12 eqtrdi JTopOnXxClsdJ¬fixx=x=V
14 13 neeq1d JTopOnXxClsdJ¬fixx=xV
15 9 14 mpbiri JTopOnXxClsdJ¬fixx=x
16 15 a1d JTopOnXxClsdJ¬fixx=fFilXJfClusfx
17 ssfii xVxfix
18 17 elv xfix
19 simplrl JTopOnXxClsdJ¬fixxxClsdJ
20 1 cldss2 ClsdJ𝒫J
21 4 ad2antrr JTopOnXxClsdJ¬fixxX=J
22 21 pweqd JTopOnXxClsdJ¬fixx𝒫X=𝒫J
23 20 22 sseqtrrid JTopOnXxClsdJ¬fixxClsdJ𝒫X
24 19 23 sstrd JTopOnXxClsdJ¬fixxx𝒫X
25 simpr JTopOnXxClsdJ¬fixxx
26 simplrr JTopOnXxClsdJ¬fixx¬fix
27 toponmax JTopOnXXJ
28 27 ad2antrr JTopOnXxClsdJ¬fixxXJ
29 fsubbas XJfixfBasXx𝒫Xx¬fix
30 28 29 syl JTopOnXxClsdJ¬fixxfixfBasXx𝒫Xx¬fix
31 24 25 26 30 mpbir3and JTopOnXxClsdJ¬fixxfixfBasX
32 ssfg fixfBasXfixXfilGenfix
33 31 32 syl JTopOnXxClsdJ¬fixxfixXfilGenfix
34 18 33 sstrid JTopOnXxClsdJ¬fixxxXfilGenfix
35 34 sselda JTopOnXxClsdJ¬fixxyxyXfilGenfix
36 fclssscls yXfilGenfixJfClusXfilGenfixclsJy
37 35 36 syl JTopOnXxClsdJ¬fixxyxJfClusXfilGenfixclsJy
38 19 sselda JTopOnXxClsdJ¬fixxyxyClsdJ
39 cldcls yClsdJclsJy=y
40 38 39 syl JTopOnXxClsdJ¬fixxyxclsJy=y
41 37 40 sseqtrd JTopOnXxClsdJ¬fixxyxJfClusXfilGenfixy
42 41 ralrimiva JTopOnXxClsdJ¬fixxyxJfClusXfilGenfixy
43 ssint JfClusXfilGenfixxyxJfClusXfilGenfixy
44 42 43 sylibr JTopOnXxClsdJ¬fixxJfClusXfilGenfixx
45 fgcl fixfBasXXfilGenfixFilX
46 oveq2 f=XfilGenfixJfClusf=JfClusXfilGenfix
47 46 neeq1d f=XfilGenfixJfClusfJfClusXfilGenfix
48 47 rspcv XfilGenfixFilXfFilXJfClusfJfClusXfilGenfix
49 31 45 48 3syl JTopOnXxClsdJ¬fixxfFilXJfClusfJfClusXfilGenfix
50 ssn0 JfClusXfilGenfixxJfClusXfilGenfixx
51 44 49 50 syl6an JTopOnXxClsdJ¬fixxfFilXJfClusfx
52 16 51 pm2.61dane JTopOnXxClsdJ¬fixfFilXJfClusfx
53 52 expr JTopOnXxClsdJ¬fixfFilXJfClusfx
54 8 53 sylan2 JTopOnXx𝒫ClsdJ¬fixfFilXJfClusfx
55 54 com23 JTopOnXx𝒫ClsdJfFilXJfClusf¬fixx
56 55 ralrimdva JTopOnXfFilXJfClusfx𝒫ClsdJ¬fixx
57 topontop JTopOnXJTop
58 cmpfi JTopJCompx𝒫ClsdJ¬fixx
59 57 58 syl JTopOnXJCompx𝒫ClsdJ¬fixx
60 56 59 sylibrd JTopOnXfFilXJfClusfJComp
61 7 60 impbid JTopOnXJCompfFilXJfClusf