Metamath Proof Explorer


Theorem fclscmpi

Description: Forward direction of fclscmp . Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis flimfnfcls.x X = J
Assertion fclscmpi J Comp F Fil X J fClus F

Proof

Step Hyp Ref Expression
1 flimfnfcls.x X = J
2 cmptop J Comp J Top
3 1 fclsval J Top F Fil X J fClus F = if X = X x F cls J x
4 eqid X = X
5 4 iftruei if X = X x F cls J x = x F cls J x
6 3 5 eqtrdi J Top F Fil X J fClus F = x F cls J x
7 2 6 sylan J Comp F Fil X J fClus F = x F cls J x
8 fvex cls J x V
9 8 dfiin3 x F cls J x = ran x F cls J x
10 7 9 eqtrdi J Comp F Fil X J fClus F = ran x F cls J x
11 simpl J Comp F Fil X J Comp
12 11 adantr J Comp F Fil X x F J Comp
13 12 2 syl J Comp F Fil X x F J Top
14 filelss F Fil X x F x X
15 14 adantll J Comp F Fil X x F x X
16 1 clscld J Top x X cls J x Clsd J
17 13 15 16 syl2anc J Comp F Fil X x F cls J x Clsd J
18 17 fmpttd J Comp F Fil X x F cls J x : F Clsd J
19 18 frnd J Comp F Fil X ran x F cls J x Clsd J
20 simpr J Comp F Fil X F Fil X
21 20 adantr J Comp F Fil X x F F Fil X
22 simpr J Comp F Fil X x F x F
23 1 clsss3 J Top x X cls J x X
24 13 15 23 syl2anc J Comp F Fil X x F cls J x X
25 1 sscls J Top x X x cls J x
26 13 15 25 syl2anc J Comp F Fil X x F x cls J x
27 filss F Fil X x F cls J x X x cls J x cls J x F
28 21 22 24 26 27 syl13anc J Comp F Fil X x F cls J x F
29 28 fmpttd J Comp F Fil X x F cls J x : F F
30 29 frnd J Comp F Fil X ran x F cls J x F
31 fiss F Fil X ran x F cls J x F fi ran x F cls J x fi F
32 20 30 31 syl2anc J Comp F Fil X fi ran x F cls J x fi F
33 filfi F Fil X fi F = F
34 20 33 syl J Comp F Fil X fi F = F
35 32 34 sseqtrd J Comp F Fil X fi ran x F cls J x F
36 0nelfil F Fil X ¬ F
37 20 36 syl J Comp F Fil X ¬ F
38 35 37 ssneldd J Comp F Fil X ¬ fi ran x F cls J x
39 cmpfii J Comp ran x F cls J x Clsd J ¬ fi ran x F cls J x ran x F cls J x
40 11 19 38 39 syl3anc J Comp F Fil X ran x F cls J x
41 10 40 eqnetrd J Comp F Fil X J fClus F