Metamath Proof Explorer


Theorem fclsfil

Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsval.x X = J
Assertion fclsfil A J fClus F F Fil X

Proof

Step Hyp Ref Expression
1 fclsval.x X = J
2 1 isfcls A J fClus F J Top F Fil X s F A cls J s
3 2 simp2bi A J fClus F F Fil X