Metamath Proof Explorer


Theorem fclsnei

Description: Cluster points in terms of neighborhoods. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclsnei J TopOn X F Fil X A J fClus F A X n nei J A s F n s

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 fclselbas A J fClus F A J
3 toponuni J TopOn X X = J
4 3 adantr J TopOn X F Fil X X = J
5 4 eleq2d J TopOn X F Fil X A X A J
6 2 5 syl5ibr J TopOn X F Fil X A J fClus F A X
7 fclsneii A J fClus F n nei J A s F n s
8 7 3expb A J fClus F n nei J A s F n s
9 8 ralrimivva A J fClus F n nei J A s F n s
10 6 9 jca2 J TopOn X F Fil X A J fClus F A X n nei J A s F n s
11 topontop J TopOn X J Top
12 11 ad3antrrr J TopOn X F Fil X A X o J A o J Top
13 simprl J TopOn X F Fil X A X o J A o o J
14 simprr J TopOn X F Fil X A X o J A o A o
15 opnneip J Top o J A o o nei J A
16 12 13 14 15 syl3anc J TopOn X F Fil X A X o J A o o nei J A
17 ineq1 n = o n s = o s
18 17 neeq1d n = o n s o s
19 18 ralbidv n = o s F n s s F o s
20 19 rspcv o nei J A n nei J A s F n s s F o s
21 16 20 syl J TopOn X F Fil X A X o J A o n nei J A s F n s s F o s
22 21 expr J TopOn X F Fil X A X o J A o n nei J A s F n s s F o s
23 22 com23 J TopOn X F Fil X A X o J n nei J A s F n s A o s F o s
24 23 ralrimdva J TopOn X F Fil X A X n nei J A s F n s o J A o s F o s
25 24 imdistanda J TopOn X F Fil X A X n nei J A s F n s A X o J A o s F o s
26 fclsopn J TopOn X F Fil X A J fClus F A X o J A o s F o s
27 25 26 sylibrd J TopOn X F Fil X A X n nei J A s F n s A J fClus F
28 10 27 impbid J TopOn X F Fil X A J fClus F A X n nei J A s F n s