Metamath Proof Explorer


Theorem fclsss1

Description: A finer topology has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclsss1 J TopOn X F Fil X J K K fClus F J fClus F

Proof

Step Hyp Ref Expression
1 simpl3 J TopOn X F Fil X J K x K fClus F J K
2 ssralv J K o K x o s F o s o J x o s F o s
3 2 anim2d J K x X o K x o s F o s x X o J x o s F o s
4 1 3 syl J TopOn X F Fil X J K x K fClus F x X o K x o s F o s x X o J x o s F o s
5 simpl2 J TopOn X F Fil X J K x K fClus F F Fil X
6 fclstopon x K fClus F K TopOn X F Fil X
7 6 adantl J TopOn X F Fil X J K x K fClus F K TopOn X F Fil X
8 5 7 mpbird J TopOn X F Fil X J K x K fClus F K TopOn X
9 fclsopn K TopOn X F Fil X x K fClus F x X o K x o s F o s
10 8 5 9 syl2anc J TopOn X F Fil X J K x K fClus F x K fClus F x X o K x o s F o s
11 simpl1 J TopOn X F Fil X J K x K fClus F J TopOn X
12 fclsopn J TopOn X F Fil X x J fClus F x X o J x o s F o s
13 11 5 12 syl2anc J TopOn X F Fil X J K x K fClus F x J fClus F x X o J x o s F o s
14 4 10 13 3imtr4d J TopOn X F Fil X J K x K fClus F x K fClus F x J fClus F
15 14 ex J TopOn X F Fil X J K x K fClus F x K fClus F x J fClus F
16 15 pm2.43d J TopOn X F Fil X J K x K fClus F x J fClus F
17 16 ssrdv J TopOn X F Fil X J K K fClus F J fClus F