Metamath Proof Explorer


Theorem fclsss2

Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion fclsss2 J TopOn X F Fil X F G J fClus G J fClus F

Proof

Step Hyp Ref Expression
1 simpl3 J TopOn X F Fil X F G x J fClus G F G
2 ssralv F G s G x cls J s s F x cls J s
3 1 2 syl J TopOn X F Fil X F G x J fClus G s G x cls J s s F x cls J s
4 simpl1 J TopOn X F Fil X F G x J fClus G J TopOn X
5 fclstopon x J fClus G J TopOn X G Fil X
6 5 adantl J TopOn X F Fil X F G x J fClus G J TopOn X G Fil X
7 4 6 mpbid J TopOn X F Fil X F G x J fClus G G Fil X
8 isfcls2 J TopOn X G Fil X x J fClus G s G x cls J s
9 4 7 8 syl2anc J TopOn X F Fil X F G x J fClus G x J fClus G s G x cls J s
10 simpl2 J TopOn X F Fil X F G x J fClus G F Fil X
11 isfcls2 J TopOn X F Fil X x J fClus F s F x cls J s
12 4 10 11 syl2anc J TopOn X F Fil X F G x J fClus G x J fClus F s F x cls J s
13 3 9 12 3imtr4d J TopOn X F Fil X F G x J fClus G x J fClus G x J fClus F
14 13 ex J TopOn X F Fil X F G x J fClus G x J fClus G x J fClus F
15 14 pm2.43d J TopOn X F Fil X F G x J fClus G x J fClus F
16 15 ssrdv J TopOn X F Fil X F G J fClus G J fClus F