Metamath Proof Explorer


Theorem fclssscls

Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclssscls S F J fClus F cls J S

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 isfcls x J fClus F J Top F Fil J s F x cls J s
3 2 simp3bi x J fClus F s F x cls J s
4 fveq2 s = S cls J s = cls J S
5 4 eleq2d s = S x cls J s x cls J S
6 5 rspcv S F s F x cls J s x cls J S
7 3 6 syl5 S F x J fClus F x cls J S
8 7 ssrdv S F J fClus F cls J S