Metamath Proof Explorer


Theorem fclstopon

Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion fclstopon A J fClus F J TopOn X F Fil X

Proof

Step Hyp Ref Expression
1 fclstop A J fClus F J Top
2 istopon J TopOn X J Top X = J
3 2 baib J Top J TopOn X X = J
4 1 3 syl A J fClus F J TopOn X X = J
5 eqid J = J
6 5 fclsfil A J fClus F F Fil J
7 fveq2 X = J Fil X = Fil J
8 7 eleq2d X = J F Fil X F Fil J
9 6 8 syl5ibrcom A J fClus F X = J F Fil X
10 filunibas F Fil J F = J
11 6 10 syl A J fClus F F = J
12 filunibas F Fil X F = X
13 12 eqeq1d F Fil X F = J X = J
14 11 13 syl5ibcom A J fClus F F Fil X X = J
15 9 14 impbid A J fClus F X = J F Fil X
16 4 15 bitrd A J fClus F J TopOn X F Fil X