Metamath Proof Explorer


Theorem fcnre

Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fcnre.1 K = topGen ran .
fcnre.3 T = J
sfcnre.5 C = J Cn K
fcnre.6 φ F C
Assertion fcnre φ F : T

Proof

Step Hyp Ref Expression
1 fcnre.1 K = topGen ran .
2 fcnre.3 T = J
3 sfcnre.5 C = J Cn K
4 fcnre.6 φ F C
5 4 3 eleqtrdi φ F J Cn K
6 cntop1 F J Cn K J Top
7 5 6 syl φ J Top
8 2 toptopon J Top J TopOn T
9 7 8 sylib φ J TopOn T
10 retopon topGen ran . TopOn
11 1 10 eqeltri K TopOn
12 11 a1i φ K TopOn
13 cnf2 J TopOn T K TopOn F J Cn K F : T
14 9 12 5 13 syl3anc φ F : T