Metamath Proof Explorer


Theorem fcnvgreu

Description: If the converse of a relation A is a function, exactly one point of its graph has a given second element (that is, function value). (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion fcnvgreu Rel A Fun A -1 Y ran A ∃! p A Y = 2 nd p

Proof

Step Hyp Ref Expression
1 df-rn ran A = dom A -1
2 1 eleq2i Y ran A Y dom A -1
3 fgreu Fun A -1 Y dom A -1 ∃! q A -1 Y = 1 st q
4 3 adantll Rel A Fun A -1 Y dom A -1 ∃! q A -1 Y = 1 st q
5 2 4 sylan2b Rel A Fun A -1 Y ran A ∃! q A -1 Y = 1 st q
6 cnvcnvss A -1 -1 A
7 cnvssrndm A -1 ran A × dom A
8 7 sseli q A -1 q ran A × dom A
9 dfdm4 dom A = ran A -1
10 1 9 xpeq12i ran A × dom A = dom A -1 × ran A -1
11 8 10 eleqtrdi q A -1 q dom A -1 × ran A -1
12 2nd1st q dom A -1 × ran A -1 q -1 = 2 nd q 1 st q
13 11 12 syl q A -1 q -1 = 2 nd q 1 st q
14 13 eqcomd q A -1 2 nd q 1 st q = q -1
15 relcnv Rel A -1
16 cnvf1olem Rel A -1 q A -1 2 nd q 1 st q = q -1 2 nd q 1 st q A -1 -1 q = 2 nd q 1 st q -1
17 16 simpld Rel A -1 q A -1 2 nd q 1 st q = q -1 2 nd q 1 st q A -1 -1
18 15 17 mpan q A -1 2 nd q 1 st q = q -1 2 nd q 1 st q A -1 -1
19 14 18 mpdan q A -1 2 nd q 1 st q A -1 -1
20 6 19 sseldi q A -1 2 nd q 1 st q A
21 20 adantl Rel A Fun A -1 q A -1 2 nd q 1 st q A
22 simpll Rel A Fun A -1 p A Rel A
23 simpr Rel A Fun A -1 p A p A
24 relssdmrn Rel A A dom A × ran A
25 24 adantr Rel A Fun A -1 A dom A × ran A
26 25 sselda Rel A Fun A -1 p A p dom A × ran A
27 2nd1st p dom A × ran A p -1 = 2 nd p 1 st p
28 26 27 syl Rel A Fun A -1 p A p -1 = 2 nd p 1 st p
29 28 eqcomd Rel A Fun A -1 p A 2 nd p 1 st p = p -1
30 cnvf1olem Rel A p A 2 nd p 1 st p = p -1 2 nd p 1 st p A -1 p = 2 nd p 1 st p -1
31 30 simpld Rel A p A 2 nd p 1 st p = p -1 2 nd p 1 st p A -1
32 22 23 29 31 syl12anc Rel A Fun A -1 p A 2 nd p 1 st p A -1
33 15 a1i Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q Rel A -1
34 simplr Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q q A -1
35 14 ad2antlr Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q 2 nd q 1 st q = q -1
36 16 simprd Rel A -1 q A -1 2 nd q 1 st q = q -1 q = 2 nd q 1 st q -1
37 33 34 35 36 syl12anc Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q q = 2 nd q 1 st q -1
38 simpr Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q p = 2 nd q 1 st q
39 38 sneqd Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q p = 2 nd q 1 st q
40 39 cnveqd Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q p -1 = 2 nd q 1 st q -1
41 40 unieqd Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q p -1 = 2 nd q 1 st q -1
42 28 ad2antrr Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q p -1 = 2 nd p 1 st p
43 37 41 42 3eqtr2d Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q q = 2 nd p 1 st p
44 30 simprd Rel A p A 2 nd p 1 st p = p -1 p = 2 nd p 1 st p -1
45 22 23 29 44 syl12anc Rel A Fun A -1 p A p = 2 nd p 1 st p -1
46 45 ad2antrr Rel A Fun A -1 p A q A -1 q = 2 nd p 1 st p p = 2 nd p 1 st p -1
47 simpr Rel A Fun A -1 p A q A -1 q = 2 nd p 1 st p q = 2 nd p 1 st p
48 47 sneqd Rel A Fun A -1 p A q A -1 q = 2 nd p 1 st p q = 2 nd p 1 st p
49 48 cnveqd Rel A Fun A -1 p A q A -1 q = 2 nd p 1 st p q -1 = 2 nd p 1 st p -1
50 49 unieqd Rel A Fun A -1 p A q A -1 q = 2 nd p 1 st p q -1 = 2 nd p 1 st p -1
51 13 ad2antlr Rel A Fun A -1 p A q A -1 q = 2 nd p 1 st p q -1 = 2 nd q 1 st q
52 46 50 51 3eqtr2d Rel A Fun A -1 p A q A -1 q = 2 nd p 1 st p p = 2 nd q 1 st q
53 43 52 impbida Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q q = 2 nd p 1 st p
54 53 ralrimiva Rel A Fun A -1 p A q A -1 p = 2 nd q 1 st q q = 2 nd p 1 st p
55 eqeq2 r = 2 nd p 1 st p q = r q = 2 nd p 1 st p
56 55 bibi2d r = 2 nd p 1 st p p = 2 nd q 1 st q q = r p = 2 nd q 1 st q q = 2 nd p 1 st p
57 56 ralbidv r = 2 nd p 1 st p q A -1 p = 2 nd q 1 st q q = r q A -1 p = 2 nd q 1 st q q = 2 nd p 1 st p
58 57 rspcev 2 nd p 1 st p A -1 q A -1 p = 2 nd q 1 st q q = 2 nd p 1 st p r A -1 q A -1 p = 2 nd q 1 st q q = r
59 32 54 58 syl2anc Rel A Fun A -1 p A r A -1 q A -1 p = 2 nd q 1 st q q = r
60 reu6 ∃! q A -1 p = 2 nd q 1 st q r A -1 q A -1 p = 2 nd q 1 st q q = r
61 59 60 sylibr Rel A Fun A -1 p A ∃! q A -1 p = 2 nd q 1 st q
62 fvex 2 nd q V
63 fvex 1 st q V
64 62 63 op2ndd p = 2 nd q 1 st q 2 nd p = 1 st q
65 64 eqeq2d p = 2 nd q 1 st q Y = 2 nd p Y = 1 st q
66 65 adantl Rel A Fun A -1 p = 2 nd q 1 st q Y = 2 nd p Y = 1 st q
67 21 61 66 reuxfr1d Rel A Fun A -1 ∃! p A Y = 2 nd p ∃! q A -1 Y = 1 st q
68 67 adantr Rel A Fun A -1 Y ran A ∃! p A Y = 2 nd p ∃! q A -1 Y = 1 st q
69 5 68 mpbird Rel A Fun A -1 Y ran A ∃! p A Y = 2 nd p