Step |
Hyp |
Ref |
Expression |
1 |
|
df-rn |
|
2 |
1
|
eleq2i |
|
3 |
|
fgreu |
|
4 |
3
|
adantll |
|
5 |
2 4
|
sylan2b |
|
6 |
|
cnvcnvss |
|
7 |
|
cnvssrndm |
|
8 |
7
|
sseli |
|
9 |
|
dfdm4 |
|
10 |
1 9
|
xpeq12i |
|
11 |
8 10
|
eleqtrdi |
|
12 |
|
2nd1st |
|
13 |
11 12
|
syl |
|
14 |
13
|
eqcomd |
|
15 |
|
relcnv |
|
16 |
|
cnvf1olem |
|
17 |
16
|
simpld |
|
18 |
15 17
|
mpan |
|
19 |
14 18
|
mpdan |
|
20 |
6 19
|
sselid |
|
21 |
20
|
adantl |
|
22 |
|
simpll |
|
23 |
|
simpr |
|
24 |
|
relssdmrn |
|
25 |
24
|
adantr |
|
26 |
25
|
sselda |
|
27 |
|
2nd1st |
|
28 |
26 27
|
syl |
|
29 |
28
|
eqcomd |
|
30 |
|
cnvf1olem |
|
31 |
30
|
simpld |
|
32 |
22 23 29 31
|
syl12anc |
|
33 |
15
|
a1i |
|
34 |
|
simplr |
|
35 |
14
|
ad2antlr |
|
36 |
16
|
simprd |
|
37 |
33 34 35 36
|
syl12anc |
|
38 |
|
simpr |
|
39 |
38
|
sneqd |
|
40 |
39
|
cnveqd |
|
41 |
40
|
unieqd |
|
42 |
28
|
ad2antrr |
|
43 |
37 41 42
|
3eqtr2d |
|
44 |
30
|
simprd |
|
45 |
22 23 29 44
|
syl12anc |
|
46 |
45
|
ad2antrr |
|
47 |
|
simpr |
|
48 |
47
|
sneqd |
|
49 |
48
|
cnveqd |
|
50 |
49
|
unieqd |
|
51 |
13
|
ad2antlr |
|
52 |
46 50 51
|
3eqtr2d |
|
53 |
43 52
|
impbida |
|
54 |
53
|
ralrimiva |
|
55 |
|
eqeq2 |
|
56 |
55
|
bibi2d |
|
57 |
56
|
ralbidv |
|
58 |
57
|
rspcev |
|
59 |
32 54 58
|
syl2anc |
|
60 |
|
reu6 |
|
61 |
59 60
|
sylibr |
|
62 |
|
fvex |
|
63 |
|
fvex |
|
64 |
62 63
|
op2ndd |
|
65 |
64
|
eqeq2d |
|
66 |
65
|
adantl |
|
67 |
21 61 66
|
reuxfr1d |
|
68 |
67
|
adantr |
|
69 |
5 68
|
mpbird |
|