Metamath Proof Explorer


Theorem fcnvres

Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998)

Ref Expression
Assertion fcnvres F:ABFA-1=F-1B

Proof

Step Hyp Ref Expression
1 relcnv RelFA-1
2 relres RelF-1B
3 opelf F:ABxyFxAyB
4 3 simpld F:ABxyFxA
5 4 ex F:ABxyFxA
6 5 pm4.71rd F:ABxyFxAxyF
7 vex yV
8 vex xV
9 7 8 opelcnv yxFA-1xyFA
10 7 opelresi xyFAxAxyF
11 9 10 bitri yxFA-1xAxyF
12 6 11 bitr4di F:ABxyFyxFA-1
13 3 simprd F:ABxyFyB
14 13 ex F:ABxyFyB
15 14 pm4.71rd F:ABxyFyBxyF
16 8 opelresi yxF-1ByByxF-1
17 7 8 opelcnv yxF-1xyF
18 17 anbi2i yByxF-1yBxyF
19 16 18 bitri yxF-1ByBxyF
20 15 19 bitr4di F:ABxyFyxF-1B
21 12 20 bitr3d F:AByxFA-1yxF-1B
22 1 2 21 eqrelrdv F:ABFA-1=F-1B