Metamath Proof Explorer


Theorem fco2

Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015)

Ref Expression
Assertion fco2 F B : B C G : A B F G : A C

Proof

Step Hyp Ref Expression
1 fco F B : B C G : A B F B G : A C
2 frn G : A B ran G B
3 cores ran G B F B G = F G
4 2 3 syl G : A B F B G = F G
5 4 adantl F B : B C G : A B F B G = F G
6 5 feq1d F B : B C G : A B F B G : A C F G : A C
7 1 6 mpbid F B : B C G : A B F G : A C