Metamath Proof Explorer


Theorem fco3OLD

Description: Obsolete version of funcofd as 20-Sep-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses fco3OLD.1 φ Fun F
fco3OLD.2 φ Fun G
Assertion fco3OLD φ F G : G -1 dom F ran F

Proof

Step Hyp Ref Expression
1 fco3OLD.1 φ Fun F
2 fco3OLD.2 φ Fun G
3 funco Fun F Fun G Fun F G
4 1 2 3 syl2anc φ Fun F G
5 fdmrn Fun F G F G : dom F G ran F G
6 4 5 sylib φ F G : dom F G ran F G
7 dmco dom F G = G -1 dom F
8 7 feq2i F G : dom F G ran F G F G : G -1 dom F ran F G
9 6 8 sylib φ F G : G -1 dom F ran F G
10 rncoss ran F G ran F
11 10 a1i φ ran F G ran F
12 9 11 fssd φ F G : G -1 dom F ran F