Step |
Hyp |
Ref |
Expression |
1 |
|
fcobij.1 |
|
2 |
|
fcobij.2 |
|
3 |
|
fcobij.3 |
|
4 |
|
fcobij.4 |
|
5 |
|
eqid |
|
6 |
|
f1of |
|
7 |
1 6
|
syl |
|
8 |
7
|
adantr |
|
9 |
3 2
|
elmapd |
|
10 |
9
|
biimpa |
|
11 |
|
fco |
|
12 |
8 10 11
|
syl2anc |
|
13 |
4 2
|
elmapd |
|
14 |
13
|
adantr |
|
15 |
12 14
|
mpbird |
|
16 |
|
f1ocnv |
|
17 |
|
f1of |
|
18 |
1 16 17
|
3syl |
|
19 |
18
|
adantr |
|
20 |
4 2
|
elmapd |
|
21 |
20
|
biimpa |
|
22 |
|
fco |
|
23 |
19 21 22
|
syl2anc |
|
24 |
3 2
|
elmapd |
|
25 |
24
|
adantr |
|
26 |
23 25
|
mpbird |
|
27 |
|
simpr |
|
28 |
27
|
coeq2d |
|
29 |
|
coass |
|
30 |
28 29
|
eqtr4di |
|
31 |
|
simpll |
|
32 |
|
f1ococnv2 |
|
33 |
31 1 32
|
3syl |
|
34 |
33
|
coeq1d |
|
35 |
|
simplrr |
|
36 |
31 35 21
|
syl2anc |
|
37 |
|
fcoi2 |
|
38 |
36 37
|
syl |
|
39 |
30 34 38
|
3eqtrrd |
|
40 |
|
simpr |
|
41 |
40
|
coeq2d |
|
42 |
|
coass |
|
43 |
41 42
|
eqtr4di |
|
44 |
|
simpll |
|
45 |
|
f1ococnv1 |
|
46 |
44 1 45
|
3syl |
|
47 |
46
|
coeq1d |
|
48 |
|
simplrl |
|
49 |
44 48 10
|
syl2anc |
|
50 |
|
fcoi2 |
|
51 |
49 50
|
syl |
|
52 |
43 47 51
|
3eqtrrd |
|
53 |
39 52
|
impbida |
|
54 |
5 15 26 53
|
f1o2d |
|