Metamath Proof Explorer


Theorem fcod

Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fcod.1 φ F : B C
fcod.2 φ G : A B
Assertion fcod φ F G : A C

Proof

Step Hyp Ref Expression
1 fcod.1 φ F : B C
2 fcod.2 φ G : A B
3 fco F : B C G : A B F G : A C
4 1 2 3 syl2anc φ F G : A C