Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fcod
Next ⟩
fco2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fcod
Description:
Composition of two mappings.
(Contributed by
Glauco Siliprandi
, 26-Jun-2021)
Ref
Expression
Hypotheses
fcod.1
⊢
φ
→
F
:
B
⟶
C
fcod.2
⊢
φ
→
G
:
A
⟶
B
Assertion
fcod
⊢
φ
→
F
∘
G
:
A
⟶
C
Proof
Step
Hyp
Ref
Expression
1
fcod.1
⊢
φ
→
F
:
B
⟶
C
2
fcod.2
⊢
φ
→
G
:
A
⟶
B
3
fco
⊢
F
:
B
⟶
C
∧
G
:
A
⟶
B
→
F
∘
G
:
A
⟶
C
4
1
2
3
syl2anc
⊢
φ
→
F
∘
G
:
A
⟶
C