Metamath Proof Explorer


Theorem fcof1o

Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by AV, 15-Dec-2019)

Ref Expression
Assertion fcof1o F : A B G : B A F G = I B G F = I A F : A 1-1 onto B F -1 = G

Proof

Step Hyp Ref Expression
1 simpll F : A B G : B A F G = I B G F = I A F : A B
2 simplr F : A B G : B A F G = I B G F = I A G : B A
3 simprr F : A B G : B A F G = I B G F = I A G F = I A
4 simprl F : A B G : B A F G = I B G F = I A F G = I B
5 1 2 3 4 fcof1od F : A B G : B A F G = I B G F = I A F : A 1-1 onto B
6 1 2 3 4 2fcoidinvd F : A B G : B A F G = I B G F = I A F -1 = G
7 5 6 jca F : A B G : B A F G = I B G F = I A F : A 1-1 onto B F -1 = G