Metamath Proof Explorer


Theorem fcoi1

Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fcoi1 F : A B F I A = F

Proof

Step Hyp Ref Expression
1 ffn F : A B F Fn A
2 df-fn F Fn A Fun F dom F = A
3 eqimss dom F = A dom F A
4 cnvi I -1 = I
5 4 reseq1i I -1 A = I A
6 5 cnveqi I -1 A -1 = I A -1
7 cnvresid I A -1 = I A
8 6 7 eqtr2i I A = I -1 A -1
9 8 coeq2i F I A = F I -1 A -1
10 cores2 dom F A F I -1 A -1 = F I
11 9 10 eqtrid dom F A F I A = F I
12 3 11 syl dom F = A F I A = F I
13 funrel Fun F Rel F
14 coi1 Rel F F I = F
15 13 14 syl Fun F F I = F
16 12 15 sylan9eqr Fun F dom F = A F I A = F
17 2 16 sylbi F Fn A F I A = F
18 1 17 syl F : A B F I A = F