Metamath Proof Explorer


Theorem fcompt

Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion fcompt A : D E B : C D A B = x C A B x

Proof

Step Hyp Ref Expression
1 ffvelrn B : C D x C B x D
2 1 adantll A : D E B : C D x C B x D
3 ffn B : C D B Fn C
4 3 adantl A : D E B : C D B Fn C
5 dffn5 B Fn C B = x C B x
6 4 5 sylib A : D E B : C D B = x C B x
7 ffn A : D E A Fn D
8 7 adantr A : D E B : C D A Fn D
9 dffn5 A Fn D A = y D A y
10 8 9 sylib A : D E B : C D A = y D A y
11 fveq2 y = B x A y = A B x
12 2 6 10 11 fmptco A : D E B : C D A B = x C A B x