Metamath Proof Explorer


Theorem fcomptss

Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fcomptss.a φ F : A B
fcomptss.b φ B C
fcomptss.g φ G : C D
Assertion fcomptss φ G F = x A G F x

Proof

Step Hyp Ref Expression
1 fcomptss.a φ F : A B
2 fcomptss.b φ B C
3 fcomptss.g φ G : C D
4 1 2 fssd φ F : A C
5 fcompt G : C D F : A C G F = x A G F x
6 3 4 5 syl2anc φ G F = x A G F x