Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fconst2
Next ⟩
fconst5
Metamath Proof Explorer
Ascii
Unicode
Theorem
fconst2
Description:
A constant function expressed as a Cartesian product.
(Contributed by
NM
, 20-Aug-1999)
Ref
Expression
Hypothesis
fvconst2.1
⊢
B
∈
V
Assertion
fconst2
⊢
F
:
A
⟶
B
↔
F
=
A
×
B
Proof
Step
Hyp
Ref
Expression
1
fvconst2.1
⊢
B
∈
V
2
fconst2g
⊢
B
∈
V
→
F
:
A
⟶
B
↔
F
=
A
×
B
3
1
2
ax-mp
⊢
F
:
A
⟶
B
↔
F
=
A
×
B