Metamath Proof Explorer


Theorem fconst2

Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999)

Ref Expression
Hypothesis fvconst2.1 B V
Assertion fconst2 F : A B F = A × B

Proof

Step Hyp Ref Expression
1 fvconst2.1 B V
2 fconst2g B V F : A B F = A × B
3 1 2 ax-mp F : A B F = A × B