Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fconst2g
Next ⟩
fvconst2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fconst2g
Description:
A constant function expressed as a Cartesian product.
(Contributed by
NM
, 27-Nov-2007)
Ref
Expression
Assertion
fconst2g
⊢
B
∈
C
→
F
:
A
⟶
B
↔
F
=
A
×
B
Proof
Step
Hyp
Ref
Expression
1
fvconst
⊢
F
:
A
⟶
B
∧
x
∈
A
→
F
⁡
x
=
B
2
1
adantlr
⊢
F
:
A
⟶
B
∧
B
∈
C
∧
x
∈
A
→
F
⁡
x
=
B
3
fvconst2g
⊢
B
∈
C
∧
x
∈
A
→
A
×
B
⁡
x
=
B
4
3
adantll
⊢
F
:
A
⟶
B
∧
B
∈
C
∧
x
∈
A
→
A
×
B
⁡
x
=
B
5
2
4
eqtr4d
⊢
F
:
A
⟶
B
∧
B
∈
C
∧
x
∈
A
→
F
⁡
x
=
A
×
B
⁡
x
6
5
ralrimiva
⊢
F
:
A
⟶
B
∧
B
∈
C
→
∀
x
∈
A
F
⁡
x
=
A
×
B
⁡
x
7
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
8
fnconstg
⊢
B
∈
C
→
A
×
B
Fn
A
9
eqfnfv
⊢
F
Fn
A
∧
A
×
B
Fn
A
→
F
=
A
×
B
↔
∀
x
∈
A
F
⁡
x
=
A
×
B
⁡
x
10
7
8
9
syl2an
⊢
F
:
A
⟶
B
∧
B
∈
C
→
F
=
A
×
B
↔
∀
x
∈
A
F
⁡
x
=
A
×
B
⁡
x
11
6
10
mpbird
⊢
F
:
A
⟶
B
∧
B
∈
C
→
F
=
A
×
B
12
11
expcom
⊢
B
∈
C
→
F
:
A
⟶
B
→
F
=
A
×
B
13
fconstg
⊢
B
∈
C
→
A
×
B
:
A
⟶
B
14
feq1
⊢
F
=
A
×
B
→
F
:
A
⟶
B
↔
A
×
B
:
A
⟶
B
15
13
14
syl5ibrcom
⊢
B
∈
C
→
F
=
A
×
B
→
F
:
A
⟶
B
16
12
15
impbid
⊢
B
∈
C
→
F
:
A
⟶
B
↔
F
=
A
×
B