Metamath Proof Explorer


Theorem fconst2g

Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007)

Ref Expression
Assertion fconst2g B C F : A B F = A × B

Proof

Step Hyp Ref Expression
1 fvconst F : A B x A F x = B
2 1 adantlr F : A B B C x A F x = B
3 fvconst2g B C x A A × B x = B
4 3 adantll F : A B B C x A A × B x = B
5 2 4 eqtr4d F : A B B C x A F x = A × B x
6 5 ralrimiva F : A B B C x A F x = A × B x
7 ffn F : A B F Fn A
8 fnconstg B C A × B Fn A
9 eqfnfv F Fn A A × B Fn A F = A × B x A F x = A × B x
10 7 8 9 syl2an F : A B B C F = A × B x A F x = A × B x
11 6 10 mpbird F : A B B C F = A × B
12 11 expcom B C F : A B F = A × B
13 fconstg B C A × B : A B
14 feq1 F = A × B F : A B A × B : A B
15 13 14 syl5ibrcom B C F = A × B F : A B
16 12 15 impbid B C F : A B F = A × B