Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fconst3
Next ⟩
fconst4
Metamath Proof Explorer
Ascii
Unicode
Theorem
fconst3
Description:
Two ways to express a constant function.
(Contributed by
NM
, 15-Mar-2007)
Ref
Expression
Assertion
fconst3
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
A
⊆
F
-1
B
Proof
Step
Hyp
Ref
Expression
1
fconstfv
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
=
B
2
fnfun
⊢
F
Fn
A
→
Fun
⁡
F
3
fndm
⊢
F
Fn
A
→
dom
⁡
F
=
A
4
eqimss2
⊢
dom
⁡
F
=
A
→
A
⊆
dom
⁡
F
5
3
4
syl
⊢
F
Fn
A
→
A
⊆
dom
⁡
F
6
funconstss
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
∀
x
∈
A
F
⁡
x
=
B
↔
A
⊆
F
-1
B
7
2
5
6
syl2anc
⊢
F
Fn
A
→
∀
x
∈
A
F
⁡
x
=
B
↔
A
⊆
F
-1
B
8
7
pm5.32i
⊢
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
=
B
↔
F
Fn
A
∧
A
⊆
F
-1
B
9
1
8
bitri
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
A
⊆
F
-1
B