Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fconst4
Next ⟩
resfunexg
Metamath Proof Explorer
Ascii
Unicode
Theorem
fconst4
Description:
Two ways to express a constant function.
(Contributed by
NM
, 8-Mar-2007)
Ref
Expression
Assertion
fconst4
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
F
-1
B
=
A
Proof
Step
Hyp
Ref
Expression
1
fconst3
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
A
⊆
F
-1
B
2
cnvimass
⊢
F
-1
B
⊆
dom
⁡
F
3
fndm
⊢
F
Fn
A
→
dom
⁡
F
=
A
4
2
3
sseqtrid
⊢
F
Fn
A
→
F
-1
B
⊆
A
5
4
biantrurd
⊢
F
Fn
A
→
A
⊆
F
-1
B
↔
F
-1
B
⊆
A
∧
A
⊆
F
-1
B
6
eqss
⊢
F
-1
B
=
A
↔
F
-1
B
⊆
A
∧
A
⊆
F
-1
B
7
5
6
bitr4di
⊢
F
Fn
A
→
A
⊆
F
-1
B
↔
F
-1
B
=
A
8
7
pm5.32i
⊢
F
Fn
A
∧
A
⊆
F
-1
B
↔
F
Fn
A
∧
F
-1
B
=
A
9
1
8
bitri
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
F
-1
B
=
A