Metamath Proof Explorer


Theorem fconst6

Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009) (Revised by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis fconst6.1 B C
Assertion fconst6 A × B : A C

Proof

Step Hyp Ref Expression
1 fconst6.1 B C
2 fconst6g B C A × B : A C
3 1 2 ax-mp A × B : A C