Metamath Proof Explorer


Theorem fconst7

Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fconst7.p x φ
fconst7.x _ x F
fconst7.f φ F Fn A
fconst7.b φ B V
fconst7.e φ x A F x = B
Assertion fconst7 φ F = A × B

Proof

Step Hyp Ref Expression
1 fconst7.p x φ
2 fconst7.x _ x F
3 fconst7.f φ F Fn A
4 fconst7.b φ B V
5 fconst7.e φ x A F x = B
6 fvexd φ x A F x V
7 5 6 eqeltrrd φ x A B V
8 snidg B V B B
9 7 8 syl φ x A B B
10 5 9 eqeltrd φ x A F x B
11 1 10 ralrimia φ x A F x B
12 nfcv _ x A
13 nfcv _ x B
14 12 13 2 ffnfvf F : A B F Fn A x A F x B
15 3 11 14 sylanbrc φ F : A B
16 fconst2g B V F : A B F = A × B
17 4 16 syl φ F : A B F = A × B
18 15 17 mpbid φ F = A × B