Metamath Proof Explorer


Theorem fconstg

Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004)

Ref Expression
Assertion fconstg B V A × B : A B

Proof

Step Hyp Ref Expression
1 sneq x = B x = B
2 1 xpeq2d x = B A × x = A × B
3 feq1 A × x = A × B A × x : A x A × B : A x
4 feq3 x = B A × B : A x A × B : A B
5 3 4 sylan9bb A × x = A × B x = B A × x : A x A × B : A B
6 2 1 5 syl2anc x = B A × x : A x A × B : A B
7 vex x V
8 7 fconst A × x : A x
9 6 8 vtoclg B V A × B : A B