Metamath Proof Explorer


Theorem fcoss

Description: Composition of two mappings. Similar to fco , but with a weaker condition on the domain of F . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fcoss.f φ F : A B
fcoss.c φ C A
fcoss.g φ G : D C
Assertion fcoss φ F G : D B

Proof

Step Hyp Ref Expression
1 fcoss.f φ F : A B
2 fcoss.c φ C A
3 fcoss.g φ G : D C
4 3 2 fssd φ G : D A
5 fco F : A B G : D A F G : D B
6 1 4 5 syl2anc φ F G : D B