Metamath Proof Explorer


Theorem fct2relem

Description: Lemma for ftc2re . (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses ftc2re.e E = C D
ftc2re.a φ A E
ftc2re.b φ B E
Assertion fct2relem φ A B E

Proof

Step Hyp Ref Expression
1 ftc2re.e E = C D
2 ftc2re.a φ A E
3 ftc2re.b φ B E
4 2 1 eleqtrdi φ A C D
5 eliooxr A C D C * D *
6 4 5 syl φ C * D *
7 6 simpld φ C *
8 6 simprd φ D *
9 eliooord A C D C < A A < D
10 4 9 syl φ C < A A < D
11 10 simpld φ C < A
12 3 1 eleqtrdi φ B C D
13 eliooord B C D C < B B < D
14 12 13 syl φ C < B B < D
15 14 simprd φ B < D
16 iccssioo C * D * C < A B < D A B C D
17 7 8 11 15 16 syl22anc φ A B C D
18 17 1 sseqtrrdi φ A B E