Metamath Proof Explorer


Theorem fctop2

Description: The finite complement topology on a set A . Example 3 in Munkres p. 77. (This version of fctop requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006)

Ref Expression
Assertion fctop2 A V x 𝒫 A | A x ω x = TopOn A

Proof

Step Hyp Ref Expression
1 isfinite A x Fin A x ω
2 1 orbi1i A x Fin x = A x ω x =
3 2 rabbii x 𝒫 A | A x Fin x = = x 𝒫 A | A x ω x =
4 fctop A V x 𝒫 A | A x Fin x = TopOn A
5 3 4 eqeltrrid A V x 𝒫 A | A x ω x = TopOn A